1-dan master of the unyielding fist of Bayesian inference
5875 stories
·
1 follower

FAQ on Microsoft’s topological qubit thing

2 Shares

Q1. Did you see Microsoft’s announcement?
A. Yes, thanks, you can stop emailing to ask! Microsoft’s Chetan Nayak was even kind enough to give me a personal briefing a few weeks ago. Yesterday I did a brief interview on this for the BBC’s World Business Report, and I also commented for MIT Technology Review.

Q2. What is a topological qubit?
A. It’s a special kind of qubit built using nonabelian anyons, which are excitations that can exist in a two-dimensional medium, behaving neither as fermions nor as bosons. The idea grew out of seminal work by Alexei Kitaev, Michael Freedman, and others starting in the late 1990s. Topological qubits have proved harder to create and control than ordinary qubits.

Q3. Then why do people care about topological qubits?
A. The dream is that they could eventually be more resilient to decoherence than regular qubits, since an error, in order to matter, needs to change the topology of how the nonabelian anyons are braided around each other. So you’d have some robustness built in to the physics of your system, rather than having to engineer it laboriously at the software level (via quantum fault-tolerance).

Q4. Did Microsoft create the first topological qubit?
A. Well, they say they did!

Q5. Didn’t Microsoft claim the experimental creation of Majorana zero modes—a building block of topological qubits—back in 2018, and didn’t they then need to retract that claim?
A. Yep. Certainly that history is making some experts cautious about the new claim. When I asked Chetan Nayak how confident I should be, his response was basically “look, we now have a topological qubit that’s behaving fully as a qubit; how much more do people want?”

Q6. Is this a big deal?
A. If the claim stands, I’d say it’s a scientific milestone for the field of topological quantum computing and physics beyond. The number of topological qubits manipulated in a single experiment has then finally increased from 0 to 1, and depending on how you define things, arguably a “new state of matter” has even been created, one that doesn’t appear in nature (but only in Nature).

Q7. Is this useful?
A. Not yet! If anyone claims that a single qubit, or even 30 qubits, are already useful for speeding up computation, you can ignore anything else that person says. (Certainly Microsoft makes no such claim.) On the question of what we believe quantum computers will or won’t eventually be useful for, see like half the archives of this blog over the past twenty years.

Q8. Does this announcement vindicate topological qubits as the way forward for quantum computing?
A. Think of it this way. If Microsoft’s claim stands, then topological qubits have finally reached some sort of parity with where more traditional qubits were 20-30 years ago. I.e., the non-topological approaches like superconducting, trapped-ion, and neutral-atom have an absolutely massive head start: there, Google, IBM, Quantinuum, QuEra, and other companies now routinely do experiments with dozens or even hundreds of entangled qubits, and thousands of two-qubit gates. Topological qubits can win if, and only if, they turn out to be so much more reliable that they leapfrog the earlier approaches—sort of like the transistor did to the vacuum tube and electromechanical relay. Whether that will happen is still an open question, to put it extremely mildly.

Q9. Are there other major experimental efforts to build topological qubits?
A. No, it’s pretty much just Microsoft. Purely as a scientist who likes to see things tried, I’m grateful that one player stuck with the topological approach even when it ended up being a long, painful slog.

Q10. Is Microsoft now on track to scale to a million topological qubits in the next few years?
A. In the world of corporate PR and pop-science headlines, sure, why not? As Bender from Futurama says, “I can guarantee anything you want!” In the world of reality, a “few years” certainly feels overly aggressive to me, but good luck to Microsoft and good luck to its competitors! I foresee exciting times ahead, provided we still have a functioning civilization in which to enjoy them.

Read the whole story
clumma
1 day ago
reply
Berkeley, CA
Share this story
Delete

Introducing the SWE-Lancer benchmark

1 Share
Can frontier LLMs earn $1 million from real-world freelance software engineering?
Read the whole story
clumma
3 days ago
reply
Berkeley, CA
Share this story
Delete

41edo instrumental dance track I just released!

1 Share
41edo instrumental dance track I just released! submitted by /u/MusicOfBeeFef to r/microtonal
[link] [comments]
Read the whole story
clumma
5 days ago
reply
Berkeley, CA
Share this story
Delete

HD Hyundai unveils first nuclear-powered vessel prototype

1 Share
HD Hyundai unveils first nuclear-powered vessel prototype submitted by /u/greg_barton to r/nuclear
[link] [comments]
Read the whole story
clumma
8 days ago
reply
Berkeley, CA
Share this story
Delete

Pondering Life in an Alien Ocean

1 Share
Pondering Life in an Alien Ocean

No one ever said Europa Clipper would be able to detect life beneath the ice, but as we look at the first imagery from the spacecraft’s star-tracking cameras, it’s helpful to keep the scope of the mission in mind. We’re after some critical information here, such as the thickness of the ice shell, the interactions between shell and underlying ocean, the composition of that ocean. All of these should give us a better idea of whether this tiny world really can be a home for life.

Image: This mosaic of a star field was made from three images captured Dec. 4, 2024, by star tracker cameras aboard NASA’s Europa Clipper spacecraft. The pair of star trackers (formally known as the stellar reference units) captured and transmitted Europa Clipper’s first imagery of space. The picture, composed of three shots, shows tiny pinpricks of light from stars 150 to 300 light-years away. The starfield represents only about 0.1% of the full sky around the spacecraft, but by mapping the stars in just that small slice of sky, the orbiter is able to determine where it is pointed and orient itself correctly. The starfield includes the four brightest stars – Gienah, Algorab, Kraz, and Alchiba – of the constellation Corvus, which is Latin for “crow,” a bird in Greek mythology that was associated with Apollo. Besides being interesting to stargazers, the photos signal the successful checkout of the star trackers. The spacecraft checkout phase has been going on since Europa Clipper launched on a SpaceX Falcon Heavy rocket on Oct. 14, 2024. Credit: NASA/JPL-Caltech.

Seen in one light, this field of stars is utterly unexceptional. Fold in the understanding that the data are being sent from a spacecraft enroute to Jupiter, and it takes on its own aura. Naturally the images that we’ll be getting at the turn of the decade will far outdo these, but as with New Horizons, early glimpses along the route are a way of taking the mission’s pulse. It’s a long hike out to our biggest gas giant.

I bring this up, though, in relation to new work on Enceladus, that other extremely interesting ice world. You would think Enceladus would pose a much easier problem when it comes to examining an internal ocean. After all, the tiny moon regularly spews material from its ocean out through those helpful cracks around its south pole, the kind of activity that an orbiter or a flyby spacecraft can readily sample, as did Cassini.

Contrast that with Europa, which appears to throw the occasional plume as well, though to my knowledge, these plumes are rare, with evidence for them emerging in Hubble data no later than 2016. It’s possible that Europa Clipper will find more, or that reanalysis of Galileo data may point to older activity. But there’s no question that in terms of easy access to ocean material, Enceladus offers the fastest track.

Enceladus flybys by the Cassini orbiter revealed ice particles, salts, molecular hydrogen and organic compounds. But according to a new paper from Flynn Ames (University of Reading) and colleagues, such snared material isn’t likely to reveal life no matter how many times we sample it. Writing in Communications Earth and Environment, the authors make the case that the ocean inside Enceladus is layered in such a way that microbes or other organic materials would likely break down as they rose to the surface.

In other words, Enceladus might have a robust ecosystem on the seafloor and yet produce jets of material which cannot possibly yield an answer. Says Ames:

“Imagine trying to detect life at the depths of Earth’s oceans by only sampling water from the surface. That’s the challenge we face with Enceladus, except we’re also dealing with an ocean whose physics we do not fully understand. We’ve found that Enceladus’ ocean should behave like oil and water in a jar, with layers that resist vertical mixing. These natural barriers could trap particles and chemical traces of life in the depths below for hundreds to hundreds of thousands of years.”

The study relies on theoretical models that are run through global ocean numerical simulations, plugging in a timescale for transporting material to the surface across a range of salinity and mixing (mostly by tidal effects). Remarkably, there is no choice of variables that offers an ocean that is not stratified from top to bottom. In this environment, given the transport mechanisms at work, hydrothermal materials would take centuries to reach the plumes, with obvious consequences for their survival.

From the paper:

Stable stratification inhibits convection—an efficient mechanism for vertical transport of particulates and dissolved substances. In Earth’s predominantly stably stratified ocean this permits the marine snow phenomena, where organic matter, unable to maintain neutral buoyancy, undergoes ’detrainment’, settling down to the ocean bottom. Meanwhile, the slow ascent of hydrothermally derived, dissolved substances provides time for scavenging processes and usage by life, resulting in surface concentrations far lower than those present nearer source regions at depth.

Although its focus is on Enceladus, the paper offers clear implications for what may be going on at Europa. Have a look at the image below (drawn not from the body of the paper but from the supplementary materials linked after the footnotes) and you’ll see the problem. We’re looking at these findings as applied to what we know of Europa.

Image: From part of Figure S7 in the supplementary materials. Caption: “Tracer age (years) at Europa’s ocean-ice interface, computed using the theoretical model outlined in the main text. Note that age contours are logarithmic.” Credit: Ames et al.

The figure shows the depth of the inversion and age of the ice shell for the same ranges in ocean salinity as inserted for Enceladus. Here we have to be careful about how much we don’t know. The ice thickness, for instance, is assumed as 10 kilometers in these calculations. Given all the factors involved, the transport timescale through the stratified layers of the modeled Europa is, as the figure shows, over 10,000 years. The same stratification layers impede delivery of oxidants from the surface to the ocean.

So there we are. The Ames paper stands as a challenge to the idea that we will be able to find evidence of life in the waters just below the ice, and likewise indicates that even if we do begin to trace more plumes from Europa’s ocean, these would be unlikely to contain any conclusive evidence about biology. Just what we needed – the erasure of evidence due to the length of the journey from the ocean depths to the ice sheet. Icy moons, it seems, are going to remain mysterious even longer than we thought.

The paper is Ames et al., “Ocean stratification impedes particulate transport to the plumes of Enceladus,” Communications Earth & Environment 6 (6 February 2025), 63 (full text).

Read the whole story
clumma
9 days ago
reply
Berkeley, CA
Share this story
Delete

Individual and additive effects of vitamin D, omega-3 and exercise on DNA methylation clocks of biological aging in older adults from the DO-HEALTH trial

1 Share
Individual and additive effects of vitamin D, omega-3 and exercise on DNA methylation clocks of biological aging in older adults from the DO-HEALTH trial submitted by /u/chromosomalcrossover to r/longevity
[link] [comments]
Read the whole story
clumma
12 days ago
reply
Berkeley, CA
Share this story
Delete
Next Page of Stories